

978-1-4244-1694-3/08/$25.00 ©2008 IEEE

Parallel IP Lookup using Multiple SRAM-based Pipelines

Weirong Jiang and Viktor K. Prasanna
Ming Hsieh Department of Electrical Engineering

University of Southern California
Los Angeles, CA 90089, USA
{weirongj, prasanna}@usc.edu

Abstract

Pipelined SRAM-based algorithmic solutions have be-
come competitive alternatives to TCAMs (ternary content
addressable memories) for high throughput IP lookup. Mul-
tiple pipelines can be utilized in parallel to improve the
throughput further. However, several challenges must be
addressed to make such solutions feasible. First, the mem-
ory distribution over different pipelines as well as across
different stages of each pipeline must be balanced. Second,
the traffic among these pipelines should be balanced. Third,
the intra-flow packet order should be preserved. In this pa-
per, we propose a parallel SRAM-based multi-pipeline ar-
chitecture for IP lookup. A two-level mapping scheme is
developed to balance the memory requirement among the
pipelines as well as across the stages in a pipeline. To bal-
ance the traffic, we propose a flow pre-caching scheme to
exploit the inherent caching in the architecture. Our tech-
nique uses neither a large reorder buffer nor complex re-
order logic. Instead, a payload exchange scheme exploiting
the pipeline delay is used to maintain the intra-flow packet
order. Extensive simulation using real-life traffic traces
shows that the proposed architecture with 8 pipelines can
achieve a throughput of up to 10 billion packets per second
(GPPS) while preserving intra-flow packet order.

1 Introduction

As the Internet continues to grow rapidly, IP lookup
with longest prefix matching becomes a major performance
bottleneck for backbone routers. Advances in optical net-
working technology are pushing link rates in high speed IP
routers beyond OC-768 (40 Gbps). Such high rates demand
that IP lookup in routers be performed in hardware. For
instance, 40 Gbps links require a throughput of 8 ns per
lookup, i.e. 125 million packets per second (MPPS), for a
minimum size (40 bytes) packet. Such throughput is impos-
sible using existing software-based solutions [19].

There are two main hardware-based solutions for high
speed IP lookup: TCAM (ternary content addressable
memory)-based and DRAM/SRAM (dynamic/static ran-
dom access memory)-based solutions. Although TCAM-
based engines can retrieve IP lookup results in just one
clock cycle, their throughput is limited by the relatively low
speed of TCAMs. They are expensive and offer little flexi-
bility to adapt to new addressing and routing protocols [2].
As shown in Table 1, SRAM outperforms TCAM with re-
spect to speed, density and power consumption. However,
traditional SRAM-based solutions, most of which can be re-
garded as some form of tree traversal, need multiple clock
cycles to complete a lookup. For example, trie [19], a tree-
like data structure representing a collection of prefixes, is
widely used in DRAM/SRAM-based solutions. It needs
multiple memory accesses to search a trie to find the longest
matched prefix for an IP address.

Pipelining has been explored to improve significantly
the throughput of trie-based IP lookup. A simple pipelin-
ing approach is to map each trie level onto a pipeline stage
with its own memory and processing logic. One IP lookup
can be performed every clock cycle. However, this ap-
proach results in unbalanced trie node distribution over the
pipeline stages. This has been identified as a dominant issue
for pipelined architectures [4]. In an unbalanced pipeline,
the “fattest” stage, which stores the largest number of trie
nodes, becomes a bottleneck. It adversely affects the over-
all performance of the pipeline for the following aspects.
First, it needs more time to access the larger local memory.
This leads to reduction in the global clock rate. Second, a fat
stage results in many updates, due to the proportional rela-
tionship between the number of updates and the number of
trie nodes stored in that stage. Particularly during the update
process caused by intensive route insertion, the fattest stage
may also result in memory overflow. Furthermore, since it
is unclear at hardware design time which stage will be the
fattest stage, we need to allocate memory with the maxi-
mum size for each stage. Such an over-provisioning results
in memory wastage [3]. To achieve a balanced memory dis-

Authorized licensed use limited to: National Cheng Kung University. Downloaded on November 16, 2008 at 23:18 from IEEE Xplore. Restrictions apply.

Table 1. Comparison of TCAM and SRAM technologies

TCAM (18 Mbits Chip) SRAM (18 Mbits Chip)

Advertised maximum clock rate (MHz) 266 [17] 400 [6, 20]
Cell size (# of transistors per bit) 16 6

Power consumption (Watts) 12 ∼ 15 [24] ≈ 0.1 [5]

tribution across stages, several novel pipeline architectures
have been proposed [3,13]. However, their non-linear struc-
tures result in throughput degradation, and most of them
must disrupt ongoing operations during a route update. Our
previous work [9] proposed a linear pipeline architecture
with a fine-grained node-to-stage mapping scheme to dis-
tribute nodes of a leaf-pushed uni-bit trie evenly to different
pipeline stages. It can achieve a high throughput of one
lookup per clock cycle. Also, it can support write bubbles,
as proposed in [4], for incremental updates without disrupt-
ing router operations.

However, projected improvements in memory access
speed are rather limited. Thus it becomes necessary to em-
ploy multiple pipelines operating in parallel to speed up IP
lookup. Each pipeline stores part of the routing table so that
both power and memory efficiency can be achieved. Simi-
lar to the above analysis of how the fattest stage affects the
global performance of a pipeline, the fattest pipeline is a
performance bottleneck of the multi-pipeline architecture.
Hence an efficient routing table partitioning and mapping
scheme is needed to balance the memory requirement over
different pipelines. On the other hand, traffic balancing is
needed to achieve multiplicative throughput improvement.
Previous works on parallel TCAM-based IP lookup engines
use either a learning algorithm to predict the future behav-
ior of incoming traffic based on its current distribution [25],
or IP/prefix caching to utilize the locality of Internet traffic
[1, 14]. Nevertheless, neither of them can work efficiently
in deep pipeline architectures, since the long pipeline delay
results in slow feedback on either distribution prediction or
cache updating. In addition, most of existing schemes make
the packets within a flow out of order, and thus need to add
large reorder buffers and complicated reorder logic to pre-
serve the intra-flow packet order.

To address the above problems, this paper proposes a
partition-based parallel IP lookup engine using multiple
SRAM-based linear pipelines. Our work makes the follow-
ing contributions.

• To the best of our knowledge, this work is among the
first discussions of SRAM-based multi-pipeline solu-
tions for parallel IP lookup.

• A novel two-level mapping scheme is proposed to
balance the memory distribution over multiple linear

pipelines as well as across all pipeline stages.

• A flow pre-caching scheme is developed to balance the
load among pipelines. In contrast to the traditional
caching schemes which suffer from pipeline delay, our
scheme benefits from deep pipelining since it utilizes
the inherent caching in the architecture.

• An approach called payload exchange, which exploits
the pipeline delay, is used to maintain the intra-flow
packet order. Neither a large reorder buffer nor com-
plex reorder logic is needed.

• Our results demonstrate that SRAM-based pipelined
algorithmic solutions are a promising alternative to
TCAMs for future high-end routers. The proposed 8-
pipeline architecture can store a full backbone routing
table with over 200K unique prefixes using 3.6 MB of
memory. It can achieve a high throughput of up to 10
billion packets per second, i.e. 3.2 Tbps for minimum
size (40 bytes) packets.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews the background and related works. Section
3 proposes a parallel architecture with multiple memory-
balanced linear pipelines. The two key problems, memory
balancing and traffic balancing, are discussed in Sections 4
and 5, respectively. In Section 6, results of extensive exper-
iments to evaluate the effectiveness of our approaches are
discussed. Section 7 concludes the paper.

2 Background

2.1 Trie-based IP Lookup

The basic mission of IP lookup is longest prefix match-
ing (LPM). The most common data structure in algorithmic
solutions for doing LPM is some form of trie [19]. Trie is
a binary tree, where a prefix is represented by a node. The
value of the prefix corresponds to the path from the root of
the tree to the node representing the prefix. The branching
decisions are made based on the consecutive bits in the pre-
fix. A trie is called a uni-bit trie if only one bit is used to
make branching decisions at a time. The prefix set in Fig-
ure 1 (a) corresponds to the uni-bit trie in Figure 1 (b). For

Authorized licensed use limited to: National Cheng Kung University. Downloaded on November 16, 2008 at 23:18 from IEEE Xplore. Restrictions apply.

01001* P4
010* P3
000* P2
0* P1

111* P8
110* P7
011* P6
01011* P5

0 1

0 1 1

0 0 1 0 1

1

11

0

P2 P6

P4 P5

P7 P8

root

(a)

(c)

Level 0

Level 1

Level 3

Level 2

Level 4

Level 5

P1

0 1

0 1 1

0 0 1 0 1

1

11

0

P2 P3 P6

P4 P5

P7 P8

root

(b)

P1

P3 P3

1

0 0

0
null

Figure 1. (a) Prefix set; (b) Uni-bit trie;
(c) Leaf-pushed uni-bit trie.

example, the prefix “010*” corresponds to the path start-
ing at the root and ending in node P3: first a left-turn (0),
then a right-turn (1), and finally a turn to the left (0). Each
trie node contains two fields: the represented prefix and the
pointer to the child nodes. By using the optimization called
leaf-pushing [21], each node needs only one field: either the
pointer to the next-hop address or the pointer to the child
nodes. Figure 1 (c) shows the leaf-pushed uni-bit trie de-
rived from Figure 1 (b).

Given a leaf-pushed uni-bit trie, IP lookup is performed
by traversing the trie according to the bits in the IP address.
When a leaf is reached, the prefix associated with the leaf is
the longest matched prefix for the IP address. The time to
look up a uni-bit trie is equal to the prefix length. The use
of multiple bits in one scan can increase the search speed.
Such a trie is called a multi-bit trie. The number of bits
scanned at a time is called the stride. Some optimization
schemes [7, 11] have been proposed to build a memory-
efficient multi-bit trie. For simplicity, we consider only the
leaf-pushed uni-bit trie in this paper, though our ideas are
applicable to other forms of tries.

2.2 Memory-Balanced Pipelines

Using pipelining can dramatically improve the through-
put of trie-based solutions. A straightforward way to

pipeline a trie is to assign each trie level to a different
stage, so that a lookup request can be issued every clock
cycle. However, as discussed earlier, this simple pipelining
scheme results in unbalanced memory distribution, leading
to low throughput and inefficient memory allocation.

Basu et al. [4] and Kim et al. [11] both reduce the mem-
ory imbalance using variable strides to minimize the largest
trie level. However, even with their schemes, the size of
the memory of different stages can have a large variation.
As an improvement upon [11], Lu et al. [15] propose a
tree-packing heuristic to balance the memory further, but it
does not solve the fundamental problem of how to retrieve
a node’s descendants that are not allocated in the following
stage. Furthermore, a variable stride multi-bit trie is diffi-
cult for hardware implementation, especially if incremental
updating is needed [4].

Baboescu et al. [3] propose a Ring pipeline architecture
for trie-based IP lookup. The memory stages are configured
in a circular, multi-point access pipeline so that lookups can
be initiated at any stage. The trie is split into several small
subtries of equal size. These subtries are then mapped to
different stages to create a balanced pipeline. Some subtries
must wrap around if their roots are mapped to the last sev-
eral stages. Though all IP packets enter the pipeline from
the first stage, their lookup processes may be activated at
different stages. Hence all the IP lookup packets must tra-
verse the pipeline twice to complete the trie traversal. The
throughput is thus 0.5 lookups per clock cycle. Kumar et
al. [13] extend the circular pipeline with a new architec-
ture called the Circular, Adaptive and Monotonic Pipeline
(CAMP). CAMP has multiple entry and exit points, result-
ing in out-of-order output and delay variation. Several re-
quest queues are employed to manage the access conflicts
between the new request and the one from the preceding
stage. CAMP can achieve a worst-case throughput of 0.8
lookups per clock cycle, while maintaining nearly balanced
memory across pipeline stages. Due to the non-linear struc-
ture, neither the Ring pipeline nor CAMP supports well the
write bubble proposed in [4] for the incremental route up-
date. Our previous work [9] proposes an optimized linear
pipeline architecture, named OLP, to achieve a throughput
of one output per clock cycle while allowing the insertion
of write bubbles. By supporting nops (no-operations) in the
pipeline, it offers more freedom in mapping trie nodes to
pipeline stages. This paper extends the idea of OLP to map
a trie to multiple pipelines, while keeping the memory re-
quirement balanced across all stages.

2.3 Partition-based Parallel IP Lookup
Engines

Most published parallel IP lookup engines are TCAM-
based. They partition the full routing table into several

Authorized licensed use limited to: National Cheng Kung University. Downloaded on November 16, 2008 at 23:18 from IEEE Xplore. Restrictions apply.

Packet 1 Pipeline 1

Pipeline 2

Queue 1

Queue 2

Pipeline 8Queue 8

Packet 2

Packet 8

Scheduler

N
ex

t-h
op

 In
foIn-

bound

Flow
Table

Out-
bound

Flow
Table

Queue Length

DIT

DIT

DIT

Payload Buffer

Scheduler

Scheduler

Figure 2. Block diagram of the architecture (P = 8).

blocks, and make the search process parallel on different
blocks. Both power efficiency and throughput improvement
can be obtained by such partitioning and parallelization.

There are two methods to partition the routing table [24]:
bit-selection and trie-based approaches. In the former, se-
lected bits are used to index different TCAM blocks di-
rectly. However, prefix distribution imbalance among the
TCAM blocks may be quite high, resulting in low worst-
case performance [14]. The latter scheme splits the trie by
carving subtries out of the full trie. This can have a much
better worst-case bound. Subtrie-to-block mapping is im-
plemented using an index logic consisting of a TCAM and
an SRAM. Since those subtries may be on different levels
of the trie, different numbers of bits are used to index dif-
ferent subtries. Such a scheme is difficult for SRAM-based
solutions, where the index tables are addressable memory
with a constant number of address bits.

Traffic balancing is another difficult problem for par-
allel IP lookup engines. Many solutions have been pro-
posed, including learning-based block rearrangement [25]
and IP/prefix caching [1, 14]. The former requires periodic
reconstruction of the entire routing table, which is imprac-
tical for SRAM-based pipeline solutions due to the high
overhead of updating. The latter exploits the Internet traffic
locality effectively to speed up the throughput. However,
contrary to TCAMs, pipeline solutions need several clock
cycles to retrieve lookup results. The cache miss penalty
may be quite high due to the large processing delay [22]. It
is even worsened by deeper pipelining with larger delay.

In load-balanced parallel packet processing engines,
packets within a flow may go out of order due to caching
and queuing. It affects adversely some network applica-
tions [8, 23]. Thus reorder buffers and logic are usually
needed, which are expensive and complicated. This paper
aims to eliminate them, by exploiting the processing delay

in the pipelines.

3 Architecture Overview

The proposed SRAM-based parallel architecture with
multiple memory-balanced linear pipelines is shown in Fig-
ure 2. It does not employ any TCAM. It can be fundamen-
tally divided into two parts based on the functions: lookup
engines and load balancer.

3.1 Lookup Engines

The architecture consists of P pipelines, each of which
stores part of the full routing table. Figure 2 shows an ar-
chitecture with P = 8. All pipelines have the same num-
ber of stages. The routing table is constructed as a leaf-
pushed uni-bit trie. The trie is partitioned into disjoint
subtries using initial bits of the prefixes. We propose a
polynomial-time approximation algorithm to map the sub-
tries to pipelines. It balances the memory requirement over
different pipelines. Within each pipeline, a fine-grained
node-to-stage mapping is employed to balance the trie node
distribution across the stages. The details of memory bal-
ancing are discussed in Section 4.

To store the mapping function between subtries and
pipelines, several small memories called Destination Index
Tables (DITs) are used. Initial bits of the IP address of
an incoming packet are used to index DITs, to retrieve the
pipeline ID to which the packet will be routed. A packet is
directed to the pipeline that stores its corresponding subtrie.
By searching the DIT, the packet also retrieves the address
of the subtrie’s root in the first stage of the pipeline. P DITs
can be used in parallel to process P packets simultaneously.
Each pipeline employs a multi-port queue to handle the ac-
cess conflicts when multiple incoming packets are directed

Authorized licensed use limited to: National Cheng Kung University. Downloaded on November 16, 2008 at 23:18 from IEEE Xplore. Restrictions apply.

to the same pipeline.

3.2 Load Balancer

Caching is an efficient way to exploit Internet traffic lo-
cality for parallel IP lookup. To relieve the cache miss
penalty due to large pipeline delay, our architecture extends
the idea of flow caching from Layer-4 switching, where
only the first packet of a flow needs lookup, and the rest
of the packets of the flow are cut-through routed through
flow cache entry lookups [22]. In this paper we define a se-
quence of packets with the same destination IP address as a
flow 1. We propose a scheme called flow pre-caching, which
allows the destination IP address of a flow to be cached
before its next-hop information is retrieved. When a new
packet arrives, it compares its destination IP address with
the cached IP addresses. If the arriving packet matches any
of the cached flows, it will be assigned the ID of that flow
no matter whether the next-hop information of that flow is
available or not. In other words, the new packet pre-fetches
its lookup result even if its flow has not retrieved the next-
hop information. The Scheduler directs this packet to the
pipeline with minimum load (whose queue has the fewest
packets). Then, this packet goes through the pipeline with-
out any operation. Otherwise (i.e. the new packet does
not match any of the cached flows), it is treated as the
first packet of a new flow. The Scheduler directs it to the
pipeline whose ID is obtained through indexing DITs. Then
this packet goes through the pipeline to perform the lookup.
When a packet exits pipelines, it uses its flow ID to index
the Outbound Flow Table to find its next-hop information.
If there is no valid information in the Outbound Flow Ta-
ble for it, the next-hop information retrieved from pipelines
will be used to update that flow entry.

The intra-flow packets may go out of order due to
caching and queuing. However, in our architecture, all
packets are required to go through the pipelines from the
first stages, no matter whether they have cache hit or miss.
Thus the queued packets cannot catch up with their pre-
ceding packets that are already in the pipelines. Thus the
Scheduler can detect the intra-flow out-of-order packets
when sending packets to queues. If the intra-flow out-of-
order packet is detected, a task to exchange the payload
between out-of-order packets is initiated. As it takes mul-
tiple clock cycles for a packet to complete looking up the
pipelines, the payload exchange has enough time to be com-
pleted before the packets exit the pipelines. Thus, the intra-
flow packet order can be preserved.

The details of both flow pre-caching and payload ex-
change schemes are discussed in Section 5.

1A flow is usually identified by the common fields of IP headers, e.g.
typically the five tuple of the source and destination IP addresses, source
and destination port numbers and the protocol number [22].

4 Memory Balancing

This section studies the problem of memory balancing
over pipelines as well as across stages. Three issues are to
be addressed.

1. Partitioning the entire routing table in a simple but ef-
ficient way without TCAMs;

2. Mapping subtries to different pipelines so that each
pipeline has the same number of trie nodes;

3. Mapping trie nodes to pipeline stages so that the mem-
ory requirement across the stages is balanced.

1

0
1

0

00

01
10

Stage 1 Stage 2 Stage 3

(a) Trie Partitioning

(c) Node-to-Stage Mapping (taking Pipeline 1 as an example)

NOP

P3

P4

P6

00

0 0 1 0 1

1

11

0

ec d

f

g h

root

1

0 0

P2 P1 P6 P7 P8

P4 P5P3 P3

null

01 10 11

(b) Subtrie-to-Pipeline Mapping

0 1

1

11

0

d

f

g h

0 0

P6

P4 P5P3 P3

01 00, 11

0

c

1

P2 P1
0 1

e

P8P7

Pipeline 1 (size = 9) Pipeline 2 (size = 6)

01

11

00

d

g h

0 0

P6

P4 P5P3 P3

P6
1110

● Pull up

g

h

P5

11

● Filling

d

Figure 3. Memory balancing (I = 2, P =
2,H = 3).

Authorized licensed use limited to: National Cheng Kung University. Downloaded on November 16, 2008 at 23:18 from IEEE Xplore. Restrictions apply.

Table 2. Representative Routing Tables

Routing table Location Date # of prefixes # of prefixes with length < 16

RIPE NCC(rrc00) Amsterdam, Netherlands 20071130 243474 1949 (0.80%)
LINX (rrc01) London, UK 20071130 240797 1945 (0.81%)

SFINX (rrc02) Paris, France 20071130 238089 1941 (0.82%)
AMS-IX (rrc03) Amsterdam, Netherlands 20071130 246530 1950 (0.79%)

CIXP (rrc04) Geneva, Switzerland 20071130 240180 1948 (0.81%)
VIX (rrc05) Vienna, Austria 20071130 241948 1968 (0.81%)
JPIX (rrc06) Otemachi, Japan 20071130 239332 1926 (0.80%)

NETNOD (rrc07) Stockholm, Sweden 20071130 248856 1943 (0.78%)
MAE-WEST (rrc08) San Jose, USA 20040901 83556 495 (0.59%)

TIX (rrc09) Zurich, Switzerland 20040201 132786 991 (0.75%)
MIX (rrc10) Milan, Italy 20071130 236991 1939 (0.82%)

NYIIX (rrc11) New York, USA 20071130 238836 1952 (0.82%)
DE-CIX (rrc12) Frankfurt, Germany 20071130 243731 1999 (0.82%)
MSK-IX (rrc13) Moscow, Russia 20071130 238461 1942 (0.81%)

PAIX (rrc14) Palo Alto, USA 20071130 243731 1949 (0.80%)
PTTMetro-SP (rrc15) Sao Paulo, Brazil 20071130 243242 1946 (0.80%)

We use the following definitions.

Def. 1. Two subtries are disjoint if they share no prefix.

Def. 2. The size of a trie is the number of nodes in it.

Def. 3. The depth of a pipeline is the number of stages in
it.

Def. 4. Height of a trie node is the maximum directed dis-
tance from it to a leaf node.

Def. 5. The descent size of a trie node is the number of
its descendant nodes. For example, in Figure 3, the descent
size of node d is 8.

4.1 Partitioning Routing Table

To partition the trie, we adopt a scheme called prefix ex-
pansion [21], illustrated in Figure 3 (a). Several initial bits
are used as the index to partition the trie into many disjoint
subtries. The number of initial bits to be used is called the
initial stride, denoted I . A larger I can result in more small
subtries, which can help balance the memory distribution
when mapping subtries to pipelines. However, a large I can
result in prefix duplication, where a prefix may be copied to
multiple subtries. For example, if we use I = 4 to expand
the prefixes in Figure 1 (a), prefix P3 whose length is 3 will
be copied to two subtries. One subtrie with the initial bits of
“0100” has prefixes P3 and P4, and the other with “0101”
has prefixes P3 and P5.

We study the prefix length distribution based on sixteen
BGP backbone routing tables, rrc00∼ rrc15, collected from

[18]. As shown in Table 2, few prefixes are shorter than 16.
We also conduct experiments by varying I . When I ≤ 8, it
does not result in any prefix duplication and guarantees all
the resulting subtries are disjoint. In following sections, we
pick I = 8 as a default.

4.2 Subtrie-to-Pipeline Mapping

Our partitioning scheme may result in many subtries of
various sizes. For example, using I = 8 to partition the
tries corresponding to the above 16 routing tables, some
large subtries have over 30K nodes while some small sub-
tries have only 1 node.

4.2.1 Problem Formulation

The problem now is to map the subtries to the pipelines so
that all pipelines have an equal number of trie nodes. It can
be formulated as (1).

min max
i=1,2,··· ,P

size(Si) (1)

with the constraint (2):

⋃

i=1,2,··· ,P
Si =

⋃

j=1,2,··· ,K
Tj (2)

where P denotes the number of pipelines; Si the set of
subtries contained by the ith pipeline, i = 1, 2, · · · , P ; K
the number of subtries; Ti the ith subtrie, i = 1, 2, · · · ,K;
and size(.) denotes the size of a subtrie or a set of subtries.

Authorized licensed use limited to: National Cheng Kung University. Downloaded on November 16, 2008 at 23:18 from IEEE Xplore. Restrictions apply.

4.2.2 Mapping Algorithm

The above optimization problem is NP-complete. This can
be shown by a reduction from the partitioning problem [12].
To solve it, we use a polynomial-time approximation al-
gorithm shown in Algorithm 1. According to [12], in the
worst-case, the resulting largest pipeline may have 1.5 times
the number of nodes as in the optimal mapping. Figure 3 (b)
illustrates an example of mapping 3 subtries to 2 pipelines.
The complexity of this algorithm is O(KP).

Algorithm 1 Subtrie-to-pipeline mapping

Input: K subtries: {Ti|i = 1, 2, · · · ,K}; and P empty
pipelines.

Output: P pipelines, each of which contains a set of sub-
tries Si, i = 1, 2, · · · , P .

1: Set Si = φ for all pipelines, i = 1, 2, · · · , P .
2: Sort {Ti} in the decreasing order of size(Ti), i =

1, 2, · · · ,K.
3: Assume that size(T1) ≥ size(T2) ≥ · · · ≥ size(TK).
4: for i = 1 to K do
5: Find Sm so that size(Sm) = minj=1,2,··· ,P Sj .
6: Assign Ti to the m th pipeline: Sm ← Sm ∪ Ti.
7: end for

4.2.3 Experimental Results

To verify the effectiveness of the above algorithm, we exe-
cuted the algorithm on the 16 routing tables given in Table
2. In these experiments, we set P = 8. We obtained the
resulting size of each pipeline as shown in Figure 4.

According to Figure 4, for all the 16 routing tables, our
algorithm resulted in balanced memory distribution among
8 pipelines.

1 2 3 4 5 6 7 8
4

5

6

7

8

9

10

11

12
x 10

4

Pipeline ID

of

 n
od

es

Figure 4. Node distribution over 8 pipelines.

4.3 Node-to-Stage Mapping

4.3.1 Problem Formulation

We now have a set of subtries for each pipeline. Within
each pipeline, the trie nodes should be mapped to the stages
while keeping the memory requirement across stages bal-
anced. Also, each pipeline should be linear. The problem is
formulated as (3):

min max
i=1,2,··· ,H

Mi (3)

with the constraints (4), (5) and (6):

H∑

i=1

Mi =
L∑

j=1

size(Tj) (4)

Constraint (5): All the subtries’ roots are mapped to the
first stage;

Constraint (6): If node A is an ancestor of node B in
a subtrie, then A must be mapped to a stage preceding the
stage to which B is mapped;

where H denotes the pipeline depth; Mi the number of
nodes mapped to the ith stage, i = 1, 2, · · · ,H; L the num-
ber of subtries assigned to the pipeline; Ti the ith subtrie,
i = 1, 2, · · · , L; and size(.) denotes the size of a subtrie.

4.3.2 Mapping Algorithm

We use a simple heuristic to perform the node-to-stage map-
ping. As Figure 3 (c) shows, by supporting nops, we allow
the nodes on the same level of a subtrie to be mapped onto
different pipeline stages. This provides more flexibility to
map the trie nodes and helps achieve a balanced node dis-
tribution across the stages in a pipeline.

Before mapping, two problems must be addressed. First,
since the top levels of a subtrie have fewer nodes, it is dif-
ficult to balance the first several stages with other stages.
Second, when the number of trie levels exceeds the number
of pipeline stages, it is impossible to map all nodes onto the
pipeline. In either case, we again use the scheme of prefix
expansion [21] to pull up nodes. Figure 3 (c) illustrates the
pull-up process using a stride of 2.

Now we map trie nodes to the pipeline stages while
satisfying Constraint (6). We manage two lists, namely
ReadyList and NextReadyList. The former stores the
nodes that are available for filling the current stage, while
the latter stores the nodes for filling the next stage. Since
Stage 1 is dedicated for (possibly pulled-up) subtries’ roots,
we start with mapping the nodes that are children of the
roots onto Stage 2. When filling a stage, the nodes in
ReadyList are popped out and mapped onto the stage, in
the decreasing order of their heights. If a node is assigned
to a stage, its children are pushed into the NextReadyList.

Authorized licensed use limited to: National Cheng Kung University. Downloaded on November 16, 2008 at 23:18 from IEEE Xplore. Restrictions apply.

Meanwhile, we check whether there are any Critical nodes
that must be mapped onto the current stage. A Critical
node is defined as the node whose height is larger than
the number of remaining stages. If such a node is not
mapped onto the current stage, none of its descendants can
be mapped later. When a stage is full or ReadyList be-
comes empty, we move on to the next stage. At that time,
the NextReadyList is merged into ReadyList. By these
means, Constraint (6) can be met. The complete algo-
rithm is shown in Algorithm 2, where Rn denotes the num-
ber of remaining nodes to be mapped onto stages, and Rh

the number of remaining stages for nodes to be mapped
onto. The complexity of this mapping algorithm is O(HN)
where H denotes the pipeline depth and N the total number
of trie nodes.

Algorithm 2 Node-to-stage mapping

Input: L subtries: {Ti|i = 1, 2, · · · , L}; and H empty
stages.

Output: H stages with mapped nodes.
1: Initialization: ReadyList = φ, NextReadyList = φ,

Rn =
∑

i=1,2,··· ,L size(Ti), Rh = H .
2: Map the roots of the subtries into Stage 1. Push the

children of the mapped nodes into ReadyList.
3: Rn = Rn −M1, Rh = Rh − 1.
4: for i = 2 to H do
5: Sort the nodes in ReadyList in the decreasing order

of their heights. If two nodes have the same height,
the node with the larger descent size is sorted prior
to the other.

6: while 1 do
7: if Mi < Rn/Rh AND Readylist �= φ then
8: Pop node from ReadyList.
9: else if ∃CriticalNode then

10: Pop the critical node from ReadyList.
11: else
12: Break.
13: end if
14: Map the popped node onto Stage i.
15: Push its children into NextReadyList.
16: Mi = Mi + 1.
17: end while
18: Rn = Rn −Mi, Rh = Rh − 1.
19: Merge the NextReadyList to the ReadyList.
20: end for

4.3.3 Implementation Issues

To allow two nodes on the same subtrie level to be
mapped to different stages, we must implement the nop (no-
operation) in the pipeline. We propose a simple method
to enable this. Each node stored in the local memory of a

pipeline stage has two fields. One is the memory address of
its child node in the pipeline stage where the child node is
stored. The other is the distance to the pipeline stage where
the child node is stored. For example, when we search the
prefix 0110 in Figure 3, the first two bits 01 direct the packet
to Pipeline 1. Then we search the following bits from Stage
1. We will get (1) node P6’s memory address in Stage 3,
and (2) the distance from Stage 1 to Stage 3. When a packet
is passed through the pipeline, the distance value is decre-
mented by 1 when it goes through a stage. When the dis-
tance value becomes 0, the child node’s address is used to
access the memory in that stage.

4.3.4 Experimental Results

We mapped the 16 routing tables onto 8 pipelines each of
which has 25 stages. The trie node distribution over the
stages is shown in Figure 5. Except for the first few stages,
all the stages had almost equal numbers of trie nodes.

4.3.5 Resource Estimation

There are 8 copies of DITs. Since I = 8, each DIT has
28 entries. Each entry has 3 bits to indicate the 8 pipelines.
Thus the total memory needed for DITs is 8×28×3 = 6.144
Kb = 0.768 KB, which is quite small.

Consider the largest routing table rrc07 among the 16
routing tables shown in Table 2. According to Figure 5,
each stage has fewer than 8K nodes. Thus 13 address bits
are enough to index a node in the local memory of a stage.
The pipeline depth is 25, and thus we need 5 bits to specify
the distance. Each node stored in the local memory needs
18 bits. The total memory needed to storing 248856 prefixes
from rrc07 in a 25-stage 8-pipeline architecture is 18×213×
25× 8 ≈ 28 Mb = 3.6 MB, where each stage needs 18 KB
of memory. Using CACTI 4.2 [5], we estimate the memory
access time. A 18 KB SRAM using 90 nm technology needs
fewer than 0.75 ns to access. In other words, the maximum
clock rate of the above architecture can be over 1.33 GHz.

5 Traffic Balancing

This section studies the problem of traffic balancing
among multiple pipelines while maintaining intra-flow
packet order.

5.1 Caching with Deep Pipelines

It has been shown that caching is an efficient mechanism
to exploit Internet traffic locality to balance the load among
parallel engines [14]. When a new packet arrives, if it has
a cache hit, it will skip lookup. Otherwise, it needs to com-
plete the lookup process. However, in SRAM-based deep

Authorized licensed use limited to: National Cheng Kung University. Downloaded on November 16, 2008 at 23:18 from IEEE Xplore. Restrictions apply.

0 10 20
0

1000

2000

3000

4000

5000

6000

Stage ID

of

 n
od

es

Pipeline #1

0 10 20
0

1000

2000

3000

4000

5000

6000

Stage ID

of

 n
od

es

Pipeline #2

0 10 20
0

1000

2000

3000

4000

5000

6000

Stage ID

of

 n
od

es

Pipeline #3

0 10 20
0

1000

2000

3000

4000

5000

6000

Stage ID

of

 n
od

es

Pipeline #4

0 10 20
0

1000

2000

3000

4000

5000

6000

Stage ID

of

 n
od

es

Pipeline #5

0 10 20
0

1000

2000

3000

4000

5000

6000

Stage ID

of

 n
od

es

Pipeline #6

0 10 20
0

1000

2000

3000

4000

5000

6000

Stage ID

of

 n
od

es

Pipeline #7

0 10 20 30
0

1000

2000

3000

4000

5000

6000

Stage ID

of

 n
od

es

Pipeline #8

Figure 5. Node distribution over stages.

pipeline architectures, after a cache miss occurs, it takes a
long time to retrieve the lookup result, and even longer time
to update the caches. This results in two problems.

First, the caching may fail to capture the traffic locality
due to the long pipeline delay. Consider the case when the
pipeline depth is much larger than the burst length of a flow.
All packets of the flow will have cache miss, since it takes a
long time for the first packet of the flow to complete lookup.

Second, the intra-flow packets may go out of order. For
example, consider packets A, B, C, belonging to the same
flow, and assume they arrive in that order. A is the first
packet and it has a cache miss. Then it enters the pipeline
to do lookup. Before A exits the pipeline, B arrives and
has a cache miss. After A completes lookup and the cache
is updated, B may be still in the pipeline. At this time, C
arrives and has a cache hit. Thus C is outputted before B.

The above two problems can be further worsened when
additional queues are employed, which makes the process-
ing delay larger and unpredictable.

5.2 Flow Pre-Caching

The key idea of flow pre-caching is to allow the IP ad-
dress of a flow to be cached before it has retrieved its next-
hop information. As a result, the subsequent packets of the
same flow can prefetch the lookup result as the first packet
of the flow is being looked up in the pipeline.

IP address
(32 bits)

Comparator

Flow_valid Flow_id
(8 bits)

Flow_valid

Flow_id

Packet

8

Last_pos

0
1

255

Next-hop Info Valid

(a) (b)

Flow_id

32

1

Figure 6. (a) One entry in Inbound Flow Table;
(b) Outbound Flow Table.

We develop some logic called Inbound Flow Table and
Outbound Flow Table shown in Figure 6. In a P -pipeline
architecture, Inbound Flow Table is constructed as a P -port
fully associative memory, while Outbound Flow Table is a
P -port directly addressable memory. The information of
each flow existing in the architecture is stored in a register
in Inbound Flow Table, while Outbound Flow Table stores
the next-hop information for each flow.

Each arriving packet compares with all flow entries in
parallel. If the packet is the first packet of a flow, a new
flow ID is assigned and a new flow entry is added into In-
bound Flow Table. The flow ID is not valid until this packet
enters the pipelines. If the packet is not the first packet
of a flow, it can find its flow ID from Inbound Flow Ta-

Authorized licensed use limited to: National Cheng Kung University. Downloaded on November 16, 2008 at 23:18 from IEEE Xplore. Restrictions apply.

ble directly. Thus, a packet can pre-fetch its lookup result
once it matches a cached flow. If the flow ID is valid, the
Scheduler sends the packet to the pipeline with the mini-
mum load i.e. the smallest number of packets among all the
queues. This helps balance the load among pipelines. Since
the flow ID is not valid until the first packet of the flow en-
ters the pipelines, such a scheduling guarantees that, when
the subsequent packets of a flow exit the pipeline, the first
packet of this flow already completes lookup, and the next-
hop information for this flow is available. When a packet
exits the pipelines, it uses its flow ID to lookup Outbound
Flow Table. If it is the first packet of a flow, it validates
its entry in Outbound Flow Table and updates the next-hop
information. Otherwise, it directly retrieves the next-hop
information from Outbound Flow Table.

The entries in Inbound Flow Table store the information
of the flows that are being looked up. It exploits the in-
herent caching of the architecture. Hence, in contrast to
traditional caching schemes [22] which suffer from large
pipeline delay, our scheme benefits from deep pipelining.
Inbound Flow Table may store some entries for the flows
that have completed lookup as well. Any cache replacement
policy can be used to update the Inbound Flow Table. In our
experiments in Section 6, we use the LRU (Least Recently
Used) algorithm as default.

5.3 Preserving Intra-flow Packet Order

In our architecture, all packets are required to go through
a pipeline from the first stage, despite whether they match
any flow. Thus, the queued packets cannot catch up with
their preceding packets that are already in the pipelines.
In other words, only the queued packets can go out of or-
der. Thus the Scheduler can detect the intra-flow out-of-
order packets when sending packets to queues. If an intra-
flow out-of-order packet is detected, a task to exchange the
payload between out-of-order packets is arranged. As it
takes multiple clock cycles for a packet to go through the
pipelines, there is enough time for payload exchange to be
completed before the packet exits the pipeline. Thus, the
intra-flow packet order can be preserved. We use following
notations.

• p denotes a packet, and f denotes a flow.

• f(p) denotes the flow that p belongs to.

• POS(p) denotes p’s position in the queue. POS(p) =
1 if p is at the head of the queue. If p exits the queue,
POS(p) = 0.

• LP (f) denotes the position of the latest packet of the
flow f .

Algorithm 3 Lookup procedure based on flow pre-caching
Input: An arriving packet p.
Output: Its next-hop information.

1: Compare with the flow entries in Inbound Flow Table.
2: if No match then
3: // Cache miss: p is the first packet of a flow.
4: Assign a flow ID and add a new flow entry.
5: Forward to the pipeline whose ID is obtained by in-

dexing DITs.
6: Go through the queue and the pipeline. When enter-

ing the pipeline, validate its flow ID.
7: Retrieve its next-hop information from the pipeline.

Validate its entry in the Outbound Flow Table.
8: else
9: Assign the same flow ID as the matched flow.

10: if The flow ID is valid then
11: Forward to the pipeline whose queue has fewest

packets.
12: Exchange the payload to maintain the intra-flow

packet order, if necessary.
13: else
14: Forward to the pipeline whose queue has the

fewest packets among those that have more than
LP (f(p)) packets.

15: end if
16: Go through the queue and pipeline. Skip any lookup

operation.
17: Retrieve next-hop information from Outbound Flow

Table.
18: end if

5.3.1 Detecting Out-of-order Packets

The Inbound Flow Table records the position of the lat-
est packet of each flow present in the architecture. As
shown in Figure 7, if an arriving packet p matches a flow
f , the Scheduler sends p to the pipeline with the minimum
load. The Scheduler can detect whether p goes out of or-
der by comparing POS(p) with LP (f). If POS(p) <
LP (f), p goes out of order within f . Then a task to ex-
change the payload of p with that of the packet at LP (f)
is arranged. Meanwhile, LP (f) is updated as LP ′(f) =
max[LP (f), POS(p)]− 1.

5.3.2 Payload Exchange

When a packet enters the architecture, only its destination
IP address is used for lookup. The payload (i.e. the entire
packet) is stored in a buffer. The pointer to the payload in
the buffer goes through the lookup engine, along with the
IP address. To exchange the payload between two packets,
we only need to exchange their pointers to the payload. The
two packets that go out of order are both in some queues.

Authorized licensed use limited to: National Cheng Kung University. Downloaded on November 16, 2008 at 23:18 from IEEE Xplore. Restrictions apply.

Table 3. IP header traces

Trace Location Date # of packets # of unique IPs

APTH-I: AMP-1110523221-1 Miami, USA 20050311 769100 17628
AUCK-VIII: 20031215-230000 Auckland, New Zealand 20031215 1449061 67865

CNIC-I: SVL-LAX-20050319-110000-0 Los Angeles, USA 20050319 2104383 7275
IPLS-IV: I2A-1091235138-1 Atlanta, USA 20040731 1821364 15791

M
ux

Flow_valid

Pipeline_id
_min_load

Pipeline_id
_from_DIT

3

3

3

Packet

D
is

pa
tc

he
r

M
ux

Queue_0
_len

Queue_7
_len

5

5

5

C
om

pa
ra

to
rA

B

LP(Flow_id)

32

Payload exchange
&

Update LP(Flow_id)

Go to the pipeline

5

Figure 7. Scheduler for one input.

Thus, as the packets need several clock cycles to complete
lookup in the pipelines, the process of payload exchange
can be completed before the packets exit the pipelines.

The complete flow pre-caching procedure is shown in
Algorithm 3.

6 Performance Evaluation

This section evaluates the effectiveness of the proposed
schemes for balancing the traffic and preserving the intra-
flow packet order. All experiments are based on simulation
using real-life traffic traces.

6.1 Simulation Setup

Due to unavailability of public IP traces associated with
their corresponding routing tables, we generated routing ta-
bles based on given traffic traces. We downloaded four
anonymized real-life traffic traces from [16]. Their infor-
mation is listed in Table 3. We extracted the unique des-
tination IP addresses from the traces to build their routing
tables. Details are shown in Table 3. According to the last
two columns in Table 3, those traces presented vastly differ-
ent locality on the destination IP distribution in the traffic.

The default setting of the major parameters of the pro-
posed architecture is shown in Table 4, where the queue size
is the maximum number of packets allowed in a queue, and
the flow table size is the maximum number of flow entries
in either Inbound Flow Table or Outbound Flow Table.

Table 4. Parameter Settings

Parameter Notation Default value

of pipelines P 8
Pipeline depth H 25

Queue size Q 16
Flow table size F 200

6.2 Methodology

6.2.1 Pre-Caching vs. Caching

In the traditional caching schemes, caches are updated after
the packets that have cache miss complete their lookup. Our
architecture can easily implement the traditional caching
schemes by skipping Outbound Flow Table and updating
Inbound Flow Table only after the flows retrieve the next-
hop information from the pipeline.

We developed a trace-driven simulator for both caching
based and flow pre-caching based multi-pipeline architec-
tures. In the following figures, “caching” refers to the tra-
ditional caching scheme, while “pre-caching” refers to the
proposed flow pre-caching scheme.

6.2.2 Performance Metrics

The arrival rate of input packets in a P -pipeline architec-
ture was P per clock cycle. We measured four performance
metrics: Throughput, Packet drop rate, Latency, and Pay-
load exchange frequency.

The Throughput is defined as the average number of out-
put packets per clock cycle. Note that in a P pipeline archi-
tecture, the Throughput ≤ P .

The Packet drop rate is defined as the ratio of the number
of dropped packets to the total number of packets input.

The Latency is defined as the number of clock cycles
taken for a packet to go through the queue and the pipeline.

The Payload exchange frequency is defined as the ratio
of the number of times the payload is exchanged to the total
number of packets processed.

Authorized licensed use limited to: National Cheng Kung University. Downloaded on November 16, 2008 at 23:18 from IEEE Xplore. Restrictions apply.

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

of Pipelines

T
hr

ou
gh

pu
t (

P
P

C
)

APTH

w/ neither
w/ caching
w/ pre−caching

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

of Pipelines

T
hr

ou
gh

pu
t (

P
P

C
)

AUCK

w/ neither
w/ caching
w/ pre−caching

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

of Pipelines

T
hr

ou
gh

pu
t (

P
P

C
)

CNIC

w/ neither
w/ caching
w/ pre−caching

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

of Pipelines
T

hr
ou

gh
pu

t (
P

P
C

)

IPLS

w/ neither
w/ caching
w/ pre−caching

Figure 8. Throughput with various numbers of pipelines (P = 1, 2, 4, 6, 8; H = 25, Q = 16, F = 200).

6.3 Throughput Scalability

In this experiment, we increased P and examined its ef-
fect on the throughput performance. The results are shown
in Figure 8. According to the results, when neither caching
nor pre-caching was enabled, the increase in the through-
put exhibited poor scalability. The pre-caching scheme had
good scalability in all cases. Especially for the APTH trace,
the pre-caching scheme achieved a throughput of over 7.8
packets per clock cycle (PPC), while the caching scheme
achieved no more than 6.8 PPC.

6.4 Increasing Pipeline Depth

We varied the number of pipeline stages to understand
its impact on the packet drop rate. The results are shown
in Figures 9. Deep pipelining had an adverse effect on the
traditional caching scheme: the packet drop raised when
the pipeline got deeper. This confirmed our discussion in
Section 5.1. On the other hand, the proposed pre-caching
scheme kept the packet drop rate to be a constant below 2.5
%, regardless of how deep the pipeline was.

6.5 Increasing Queue Size

Large queues can alleviate the access conflict when mul-
tiple packets are directed to the same pipeline at the same
time. However, large queues also add additional delay

5 10 15 20 25
0

5

10

15

P
ac

ke
t D

ro
p

R
at

e
(%

)

APTH

w/ caching
w/ pre−caching

5 10 15 20 25
1

1.5

2

2.5

P
ac

ke
t D

ro
p

R
at

e
(%

)

AUCK

w/ caching
w/ pre−caching

5 10 15 20 25
0

0.5

1

1.5

of Pipeline Stages

P
ac

ke
t D

ro
p

R
at

e
(%

)

CNIC

w/ caching
w/ pre−caching

5 10 15 20 25
1

2

3

4

5

of Pipeline Stages

P
ac

ke
t D

ro
p

R
at

e
(%

)

IPLS

w/ caching
w/ pre−caching

Figure 9. Packet drop rate with increasing
pipeline depth (H = 5, 15, 25; P = 8, Q =
16, F = 200).

in processing packets. As discussed in Section 5.1, this
may have adverse effect on the performance of traditional
caching-based schemes. In this experiment, we varied the
queue size and evaluated the packet drop rate. The results
are shown in Figure 10. For the traces of AUCK and CNIC,
the packet drop rate reduced when the queue size was in-
creased. However, for APTH and IPLS, the packet drop

Authorized licensed use limited to: National Cheng Kung University. Downloaded on November 16, 2008 at 23:18 from IEEE Xplore. Restrictions apply.

rate increased slightly in caching-based scheme, when the
queue size was increased above 16. On the other hand, in
the pre-caching based scheme, the packet drop rate for all
traces reduced when the queue size was increased.

0 10 20 30 40
0

5

10

15

20

P
ac

ke
t D

ro
p

R
at

e
(%

)

APTH

w/ caching
w/ pre−caching

0 10 20 30 40
0

2

4

6

8

P
ac

ke
t D

ro
p

R
at

e
(%

)

AUCK

w/ caching
w/ pre−caching

0 10 20 30 40
0

1

2

3

4

Queue Size

P
ac

ke
t D

ro
p

R
at

e
(%

)

CNIC

w/ caching
w/ pre−caching

0 10 20 30 40
0

2

4

6

8

Queue Size

P
ac

ke
t D

ro
p

R
at

e
(%

)

IPLS

w/ caching
w/ pre−caching

Figure 10. Packet drop rate with varying
queue size (Q = 2, 4, 8, 16, 32; P = 8,H =
25, F = 200).

6.6 Increasing Flow Table Size

A larger flow table can result in a lower cache miss rate.
We varied the flow table size and obtained the results shown
in Figure 11. As expected, when the flow table size was in-
creased, the packet drop rate reduced, in both the schemes.

6.7 Latency Analysis

Queuing adds a variable delay on processing the pack-
ets. The number of clock cycles for a packet to go through
the queue and the pipeline is between 1 + H and Q + H .
We recorded the processing delay for each packet in the 8-
pipeline architecture (H = 25, Q = 16). The results are
shown in Figure 12. In each figure, we show the maximum
and the minimum delay in two dotted blue lines respec-
tively. As expected, the maximum delay was 16 + 25 = 41
clock cycles, and the minimum delay was 1 + 25 = 26
clock cycles. We also show the value of the average delay
in a dashed red line. The average delay was around 30 clock
cycles, for all traces.

6.8 Overhead Estimation

In all experiments, the intra-flow packet order was pre-
served due to payload exchange. However, high payload

0 50 100 150 200
0

20

40

60

80

P
ac

ke
t D

ro
p

R
at

e
(%

)

APTH

w/ caching
w/ pre−caching

0 50 100 150 200
0

20

40

60

P
ac

ke
t D

ro
p

R
at

e
(%

)

AUCK

w/ caching
w/ pre−caching

0 50 100 150 200
0

20

40

60

80

Flow Table Size

P
ac

ke
t D

ro
p

R
at

e
(%

)

CNIC

w/ caching
w/ pre−caching

0 50 100 150 200
0

20

40

60

80

Flow Table Size

P
ac

ke
t D

ro
p

R
at

e
(%

)

IPLS

w/ caching
w/ pre−caching

Figure 11. Packet drop rate with varying flow
table size (F = 0, 10, 50, 100, 200; P = 8,H =
25, Q = 16).

exchange frequency may incur high overhead in real imple-
mentations. We varied the number of pipelines to measure
the payload exchange frequency. The results are shown in
Figure 13. When P was increased from 1 to 8, the pay-
load exchange frequency for most traces increased mildly.
Even for the APTH trace where the payload exchange fre-
quency increased dramatically, the payload exchange fre-
quency was still less than 10 %.

6.9 Overall Performance

According to Section 4.3.5, we can achieve a global
clock rate of over 1.33 GHz. Meanwhile, our 8-pipeline
architecture can achieve a throughput of over 7.8 PPC, as
shown in Figure 8. The overall throughput of the proposed
8-pipeline architecture can be over 10 billion packets per
second (GPPS), i.e. 3.2 Tbps for the packets with the mini-
mum size of 40 bytes.

7 Conclusions

This paper proposed a parallel SRAM-based multi-
pipeline architecture for terabit trie-based IP lookup. Mem-
ory and traffic balancing, and intra-flow packet ordering
were identified as three major problems. We proposed a
two-level mapping scheme to balance the memory require-
ment among the pipelines as well as across the stages in a
pipeline. We proposed a flow pre-caching scheme to bal-
ance the traffic among multiple pipelines. It exploits the
inherent caching of the architecture and benefits from deep
pipelining. Also, a scheme called payload exchange was
used to maintain the intra-flow packet order. Experimental

Authorized licensed use limited to: National Cheng Kung University. Downloaded on November 16, 2008 at 23:18 from IEEE Xplore. Restrictions apply.

0 1 2 3 4 5 6 7 8

x 10
5

25

30

35

40

45
APTH

D
el

ay
 (

of

 c
lo

ck
s)

0 5 10 15

x 10
5

25

30

35

40

45
AUCK

D
el

ay
 (

of

 c
lo

ck
s)

0 0.5 1 1.5 2 2.5

x 10
6

25

30

35

40

45
CNIC

D
el

ay
 (

of

 c
lo

ck
s)

0 2 4 6 8 10 12 14 16 18

x 10
5

25

30

35

40

45
IPLS

Packet ID (in output order)

D
el

ay
 (

of

 c
lo

ck
s)

Figure 12. Processing delay of each output
packet (P = 8,H = 25, Q = 16, F = 200).

1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

9

of Pipelines

(%
)

Payload Exchange Frequency

APTH
AUCK
CNIC
IPLS

Figure 13. Payload exchange frequency
with varying numbers of pipelines (P =
1, 2, 4, 6, 8;H = 25, Q = 16, F = 200).

results using real-life traffic traces show that the proposed
architecture with 8 pipelines can achieve a high throughput
of 3.2 Tbps.

Our recent work [10] further extends the proposed ar-
chitecture. By replacing the single-port SRAMs with dual-
port SRAMs, we allow each pipeline to be traversed from
two directions at the same time. Our future work includes
applying the SRAM-based pipeline architectures to multi-
dimensional packet classification and deep packet inspec-
tion.

References

[1] M. J. Akhbarizadeh, M. Nourani, R. Panigrahy, and
S. Sharma. A TCAM-based parallel architecture for high-
speed packet forwarding. IEEE Trans. Comput., 56(1):58–
72, 2007.

[2] F. Baboescu, S. Rajgopal, L. Huang, and N. Richardson.
Hardware implementation of a tree based IP lookup algo-
rithm for OC-768 and beyond. In Proc. DesignCon ’05.

[3] F. Baboescu, D. M. Tullsen, G. Rosu, and S. Singh. A
tree based router search engine architecture with single port
memories. In Proc. ISCA ’05, pages 123–133.

[4] A. Basu and G. Narlikar. Fast incremental updates for
pipelined forwarding engines. In Proc. INFOCOM ’03,
pages 64–74.

[5] CACTI. http://www.hpl.hp.com/personal/norman jouppi/cacti4.html.
[6] Cypress Sync SRAMs. http://www.cypress.com.
[7] W. Eatherton, G. Varghese, and Z. Dittia. Tree bitmap: hard-

ware/software IP lookups with incremental updates. SIG-
COMM Comput. Commun. Rev., 34(2):97–122, 2004.

[8] S. Govind, R. Govindarajan, and J. Kuri. Packet reordering
in network processors. In Proc. IPDPS ’07, pages 1–10.

[9] W. Jiang and V. K. Prasanna. A memory-balanced linear
pipeline architecture for trie-based IP lookup. In Proc. HotI
’07, 2007.

[10] W. Jiang and V. K. Prasanna. Multi-terabit IP lookup using
parallel bidirectional pipelines. In Proc. CF ’08, 2008. To
appear.

[11] K. S. Kim and S. Sahni. Efficient construction of pipelined
multibit-trie router-tables. IEEE Trans. Comput., 56:32–43,
2007.

[12] J. Kleinberg and E. Tardos. Algorithm Design. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2005.

[13] S. Kumar, M. Becchi, P. Crowley, and J. Turner. CAMP:
fast and efficient IP lookup architecture. In Proc. ANCS ’06,
pages 51–60.

[14] D. Lin, Y. Zhang, C. Hu, B. Liu, X. Zhang, and D. Pao.
Route table partitioning and load balancing for parallel
searching with TCAMs. In Proc. IPDPS ’07, pages 1–10.

[15] W. Lu and S. Sahni. Packet forwarding using pipelined
multibit tries. In Proc. ISCC ’06, pages 802–807.

[16] NLANR network traffic packet header traces.
http://pma.nlanr.net/traces/.

[17] Renesas CAM ASSP Series. http://www.renesas.com.
[18] RIS Raw Data. http://data.ris.ripe.net.
[19] M. A. Ruiz-Sanchez, E. W. Biersack, and W. Dabbous. Sur-

vey and taxonomy of IP address lookup algorithms. IEEE
Network, 15(2):8–23, 2001.

[20] SAMSUNG High Speed SRAMs.
http://www.samsung.com.

[21] V. Srinivasan and G. Varghese. Fast address lookups us-
ing controlled prefix expansion. ACM Trans. Comput. Syst.,
17:1–40, 1999.

[22] Y. Tung and H. Che. Study of flow caching for layer-4
switching. In Proc. ICCCN ’00, pages 135–140.

[23] B. Wu, Y. Xu, H. Lu, and B. Liu. A practical packet reorder-
ing mechanism with flow granularity for parallelism exploit-
ing in network processors. In Proc. IPDPS ’05, pages 133a–
133a.

[24] F. Zane, G. J. Narlikar, and A. Basu. CoolCAMs: Power-
efficient TCAMs for forwarding engines. In Proc. INFO-
COM ’03, pages 42–52.

[25] K. Zheng, C. Hu, H. Lu, and B. Liu. A TCAM-based dis-
tributed parallel IP lookup scheme and performance analy-
sis. IEEE/ACM Trans. Netw., 14(4):863–875, 2006.

Authorized licensed use limited to: National Cheng Kung University. Downloaded on November 16, 2008 at 23:18 from IEEE Xplore. Restrictions apply.

